

Dept: AUTOMOBILE Class: SE

Unit 1: Properties of Fluids: (10 Lectures & 18-20 Marks)

Unit No.	Lecture No.	Topic Detail	Duration (in Minutes)	Topic Based On	Marking Scheme
1	1	Properties of Fluids: Characteristics of Fluids, Density, types of fluid and rheology	20	Theory	4
	2	Specific Weight, Specific Gravity.	30	Theory	4
	3	Dynamic Viscosity, Kinematics Viscosity, measurement of viscosity,	30	Theory	6
200	4	Application based numerical on viscosity-flow through pipe, Lubrication, bearing, brake fluids, parallel plates, rotating shafts etc.	30	Theory + Numerical	8-10
	5	Surface Tension, Capillarity, Compressibility, Vapor pressure.	60	Theory	6
	6	Pascal's Law, hydrostatics law, hydraulic ram, Pressure measurement: pressure scale, piezometer, barometer.	30	Theory + Numerical	8-10
	7	Manometer - simple, inclined, differential, micro manometer, inverted Pressure at a point, Total Pressure.	30	Theory + Numerical	8-10
	8	Centre of pressure, Pressure on a plane inclined.	20	Theory + Numerical	8-10
	9	Curved surfaces, Buoyancy, meta center and floatation.	30	Theory	4
	10	Buoyancy, meta center and floatation.	30	Theory	6
	11	Revision of all Topics taught	90	Theory + Numerical	-
	12	Unit Test-1	30	Theory + Numerical	30

Dept: AUTOMOBILE Class: SE

Unit 2: Fluid Kinematics: (8 Lectures & 18 Marks)

Unit No.	Lecture No.	Topic Detail	Duration (in Minutes)	Topic Based On	Marking Scheme
2	1	Fluid Kinematics: Eulerian and langragian approach of fluid flow.	20	Theory	4
	2	Total or material derivative for velocity field.	30	Theory	4
	3	acceleration fields, continuity equation in 1D & 3D flow,	30	Theory	6
	4	Types of flows (One, two, three dimensional, steady unsteady, uniform, non-uniform,	30	Theory + Numerical	8-10
P	5	Laminar, turbulent, compressible, incompressible, rotational, irrotational).	60	Theory	6
	6	Visualization of flow field (Stream, Path and Streak line).	30	Theory + Numerical	8-10
	7	Velocity in two dimensional flow	30	Theory + Numerical	8-10
	8	Stream function and velocity potential function.	20	Theory + Numerical	8-10
	9	Revision of all Topics taught	90	Theory + Numerical	-
	10	Unit Test-1	30	Theory + Numerical	30

Dept: AUTOMOBILE Class: SE

Unit 3: Fluid Dynamics: (11 Lectures & 18Marks)

Unit No.	Lecture No.	Topic Detail	Duration (in Minutes)	Topic Based On	Marking Scheme
3	1	Fluid Dynamics: introduction to flow models- control volume and infinitesimally small element.	20	Theory	4
	2	Continuity and Linear momentum Equation using differential Approach, Introduction to Navier – Stokes Equation.	30	Theory	4
	3	Euler equation of motion along streamline,	30	Theory + Numerical	6
	4	Derivation of Bernoulli's equation along stream line	30	Theory + Numerical	8-10
	5	Concept of HGL and THL or TEL.	20	Theory	6
	6	Application of Bernoulli's equation to venture meter, Pitot tube.	30	Theory + Numerical	8-10
	7	Orifices, Orifice meter, introduction to coriolis flow meter,	30	Theory + Numerical	8-10
	8	Introduction to orifices, notches & weirs	20	Theory + Numerical	8-10
	9	Entrance region theory,	30	Theory	8
	10	velocity and shear Stress distribution for laminar flow through pipe	60	Theory	6
	11	fixed parallel plates and Couette flow, velocity profile of turbulent flow	90	Theory + Numerical	6
	12	Revision of all Topics taught	90	Theory + Numerical	-

Dept: AUTOMOBILE Class: SE

Unit 4: Internal Flow& External Flow: (05 Lectures & 18 Marks)

Unit No.	Lecture No.	Topic Detail	Duration (in Minutes)	Topic Based On	Marking Scheme
4	1	Internal Flow & External Flow: Laminar and Turbulent flow physics.	90	Theory	4
	2	Entrance region and fully developed flow.	45	Theory + Numerical	6
	3	Flow Through Pipes: Energy losses through pipe-Major and Minor losses.	60	Theory + Numerical	8-10
	4	Darcy-Weisbach equation, pipes in series, pipes in parallel.	45	Theory	6
P	15	Concept of equivalent pipe, Moody's diagram, Siphons, Transmission of power.	40	Theory	6
	6	Revision of all Topics taught	90	Theory + Numerical	-
	7	Unit Test-1	30	Theory + Numerical	30

Dept: AUTOMOBILE Class: SE

Unit 5: Dimensional Analysis: (07 Lectures & 18Marks)

Unit No.	Lecture No.	Topic Detail	Duration (in Minutes)	Topic Based On	Marking Scheme
5	1	Dimensional Analysis: Dimensions of physical, quantities, dimensional homogeneity.	40	Theory	8
	2	External flows: Boundary layer formation for flow over Flat plate.	30	Theory	4
	3	Boundary layer thickness:-displacement, momentum.	30	Theory + Numerical	6
	4	Energy, Separation of Boundary Layer and Methods of Controlling.	30	Theory + Numerical	8-10
	5	Forces on immersed bodies: -Lift and Drag, flow around cylinder.	20	Theory	6
	6	Aerofoil (Pressure distribution and Circulation).	30	Theory + Numerical	8-10
	7	Application.	30	Theory + Numerical	8-10
	8	Revision of all Topics taught	90	Theory + Numerical	-
	9	Unit Test-1	30	Theory + Numerical	30

Dept: AUTOMOBILE Class: SE

Unit 6: Dimensional Analysis: (06 Lectures & 18 Marks)

Unit No.	Lecture No.	Topic Detail	Duration (in Minutes)	Topic Based On	Marking Scheme
6	1	Introduction, system of dimensions	30	Theory + Numerical	6
	2	Dimensional homogeneity	30	Theory + Numerical	8-10
	3	Buckingham Theorem, important dimensionless numbers,	20	Theory	6
	4	Repeating variables, dimensionless numbers and their physical significance	30	Theory + Numerical	8-10
	5	Model & prototype, similarity, scaling parameters, model laws	30	Theory + Numerical	8-10
	6	Objectives, importance and application of model studies.	30	Theory + Numerical	8-10
	7	Revision of all Topics taught	90	Theory + Numerical	-
	8	Unit Test-1	30	Theory + Numerical	30

Total = 47+15(For Revision and Doubt Solving Sessions)

Text Books:

- 1) Fundamentals of Fluid Mechanics- Munson, Young and Okiishi- Wiley India
- 2) Fluid Mechanics- Potter Wiggert Cengage Learning
- 3) Introduction to Fluid Mechanics- Fox, Pichard, McDonald- Wiley
- 4) Fluid Mechanics,- Dr. R.K. Bansal- Laxmi Publication (P) Ltd. New Delhi
- 5) Hydraulics and Fluid Mechanics, Modi P. N. and Seth S. M -Standard Book House.
- 6) Fluid Mechanics,- Cengel&Cimbla- TATA McGraw-Hill
- 7) Fluid Mechanics- White- TATA McGraw-Hill

Reference Books:

- 1) Fluid Mechanics- Kundu, Cohen, Dowling- Elsevier India
- 2) Fluid Mechanics Chaim Gutfinger David Pnueli-Cambridge University press.
- 3) Introduction to Fluid Mechanics-Edward Shaughnessy, Ira Katz James Schaffer-OXFORD

